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ABSTRACT: A biofuels and bioproducts conversion network
is optimized over unit cost and unit greenhouse gas emissions
objectives. We use a multiobjective, functional unit approach
based on the life cycle analysis methodology with simultaneous
consideration of capital budget constraints. A novel functional
unit of mass of input biogenic CO2-eq is proposed to capture
common benefits of bioproducts and biofuels. A novel
dimensionless net atmospheric carbon ratio (NACR) for
bioconversion processes is defined that captures the life cycle
carbon footprint of the process from feedstock cultivation to
product end use. The model is formulated as a nonconvex
multiobjective mixed integer nonlinear fractional programming
problem. We address computational complexity by developing
a novel global optimization algorithm that incorporates the parametric algorithm and successive piecewise linear approximations
to estimate nonconvex terms, and we introduce nonlinear programming subproblems to ensure global convergence under capital
cost budget constraints. We consider large-scale case studies of a bioconversion network of 200 technologies and 142 materials/
compounds where fuels and chemicals can be made from biomass. Unit costs range from −$0.27 to −$0.43/kg input CO2-eq,
and the NACRs range from 0.17 to 0.25. An optimal NACR that includes biofuel combustion emissions over a network where
only biofuels are produced was found to be 1.90.
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■ INTRODUCTION

Sustainability is a topic of increasing attention and importance.
Renewable energy is often jointly discussed with sustainability,
as they share several qualities. For example, it is difficult to
imagine a sustainable society that heavily if not largely relies on
nonrenewable energy sources for everyday activities. Clearly,
developing and implementing renewable energy technologies is
a necessary undertaking if the goal of sustainability is to be
reached. More nations, communities, and industries realize that
both concepts are desirable if not vital to continuing many
aspects of today’s society, if not all of society itself.1,2 Biofuels
have been identified as a key component of the renewable
energy portfolio.3,4 Thus, we must consider developing and
implementing biofuel systems that are sustainable.
To reach this goal, bioconversion systems must be designed

with both economic and environmental sustainability in mind.
Certainly, the question of economics has been discussed,
addressed, and studied at length. Economic metrics of
sustainability include familiar terms such as net present value,
return on investment, profits, etc. However, some key
economic concerns of emerging renewable energy technologies
and systems must still be addressed. For example, if novel,

sustainable technologies such as biofuel production processes
are to be designed, constructed, and operated, the capital cost
of these processes should not be prohibitively high. An
important reason biofuel investment has decreased in recent
years is due to the high capital costs associated with this sector.5

It will be critical during planning stages to ensure that the
capital cost of novel, proposed processing pathways will not be
larger than a threshold capital cost. If process designers can
ensure this will be the case, uncertainty associated with the
project will decrease, possibly leading to more investment in
the sector. However, incorporating a capital cost budget into
process pathway design and optimization models poses
mathematical challenges owing to how capital costs typically
scale nonconvexly with capacity. While capital budgeting
modeling has been studied6 and some approaches considered,7

much of the work has come from a financial research
perspective and does not take into account scaling capital
costs with capacity or other process attributes. It is necessary to
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consider scaling capital costs under a capital budgeting
constraint when optimizing novel processing pathways to
ensure their viability and practical feasibility.
An intriguing aspect of biofuels is that, much like petroleum,

there is an option to process the biomass into other value-
added chemicals and compounds, referred to as bioproducts
throughout this work.8−10 Examples of bioproducts that have
received attention recently include biopolymers such as poly-3-
hydroxybutyrate,11 succinic acid,12 and isobutanol.13 Since
economic investment in biofuels has decreased recently, at
least in the United States,5 there exists a prime opportunity to
either produce bioproducts directly or co-produce them with
biofuels to make biofuels more economically sustainable. Thus,
there is also a research opportunity to incorporate bioproducts
into bioconversion product and process network models. While
chemicals process and product networks for natural gas and
natural gas liquids have been studied and optimized,14

bioconversion product and process networks that include
bioproducts have not been investigated. Additionally, using
bioproducts to replace other petroleum-based chemicals could
provide an environmental benefit.8 Therefore, producing or co-
producing bioproducts with biofuels could augment both
economic and environmental sustainability. However, quantify-
ing environmental sustainability or impacts of biofuels and
bioproducts with appropriate metrics is a challenge. A
commonly used environmental metric has been the greenhouse
gas (GHG) emissions of a process to determine its environ-
mental footprint.15,16 Other metrics are continually being
developed and implemented, such as the nitrogen footprint or
other climate impacts.17 When co-producing bioproducts and
biofuels, however, there must be some quantitative measure to

fairly determine the environmental impact of both biofuel and
bioproducts production.
It is the aim of this paper to provide a novel, bioconversion-

targeted approach to quantitatively understand and optimize
biofuel and bioproducts process and product networks over
economic and environmental objectives. Thus, our goal is not
to optimize bioconversion pathways at the process level but at
the processing pathway level. We first construct a bioconver-
sion product and process network of 200 technologies and over
140 materials/compounds that includes both biofuels and
bioproducts, as opposed to previous works that studied
exclusively biofuels,18,19 resulting in the most comprehensive
bioconversion network to date. Next, we propose a novel
functional unit of kilograms of input carbon dioxide equivalent
(or kg input CO2-eq) from the biomass feedstock. Such a
functional unit is required in order to fairly measure the
environmental impact of both biofuels and bioproducts and has
not been used in previous works. We then introduce a new
ratio, the Net Atmospheric CO2-eq Ratio (NACR), to
determine the net overall CO2-eq emitted to the atmosphere,
calculated as the CO2-eq emissions throughout the processing
pathway divided by the input CO2-eq in the input biomass.
Optimizing the NACR of a bioconversion processing pathway
can provide a novel perspective into the trade-off of producing
more biofuels and bioproducts against increasing emissions
throughout the processing pathway. Such a perspective has not
been provided by minimizing bulk GHG emissions as in
previous works.18 We formulate multiobjective optimization
models using this network and functional unit to find optimal
processing pathways with minimum NACR and minimum unit
cost. An overall processing pathway capital cost budget
constraint is also considered, the first time such a constraint

Figure 1. Bioconversion product and process network used in this study. Biomass feedstocks are colored in dark green in the left side of the figure,
pretreatment/primary processing stages are colored in dark red (middle-left area of the figure), upgrading and final processing stages are colored in
tan (middle-right area of the figure), biofuels are colored in light green (right side of the figure), and bioproducts are colored in light yellow (right
side of the figure). The colors of the arrows are based on that of their source nodes.
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has been considered in network/superstructure optimization
models.15,18,19 We develop a novel solution method to handle
the nonconvexities and difficulties presented from the capital
cost budget constraint to increase computational efficiency.
Finally, we apply these two models to a case study under
biofuels demand with the option to produce bioproducts and
another under biofuel demand with no option for bioproducts
production. The NACR calculations in the latter case study
account for biofuel combustion emissions. Results are
presented and discussed, followed by the conclusion.

■ MATERIALS AND METHODS

The model formulation provided in the Appendix and used in
this work is a general process and product network
optimization model that can be applied to a number of process
and product networks. We focus on the specific case of a
biofuels and bioproducts network; thus, the following
subsections deal with the specifics of data collection, life cycle
analysis (LCA) and optimization, and other details of
bioconversion networks. Information on data sources and
data collection methods can be found in the Supporting
Information (SI) for the interested reader.
Some of the network data, particularly for the biofuel

technologies, carries over from the authors’ previous work.18

More biofuels and new bioproducts technologies were added,
including methods for the production of biopolymers,
isobutanol, monosaccharides, etc.11−13,20−25 The bioconversion
product and process network used in this study is shown in
Figure 1. Altogether, 200 technologies and 142 materials/
compounds are present in the network model. Full details of
the data used in this study for each technology, including
reference capacities, reference operating costs, reference capital
costs, inputs, outputs, yields, etc. can be found in the SI. All
data sources (journal articles, government reports, etc.) and
corresponding information within each source (process flow
diagrams, tabulations of data, etc.) are also noted for each
technology in the SI. Thus, each technology in our network
model has not necessarily been optimized on the process level
(depending on the data source), but some form of simulation
or data collection method used in each data source (for

example, from pilot studies) ensures the data is of good quality
and is taken from state-of-the-art process design studies.

Life Cycle Optimization. LCA has developed into a well-
known and generally accepted methodology for determining
the environmental impact or impacts of a product or process.26

Environmental impacts are identified and quantified within
predefined system boundaries. For example, one might
investigate environmental impacts from cradle-to-gate or from
feedstock procurement to the production of the final product.
While LCA can help us make comparisons between products or
pathways, this information is only available a posteriori or after
the processing pathways are set and production is underway.
Life cycle optimization is a trending methodology that
integrates the tenets of LCA with optimization models to a
priori estimate the life cycle impacts of novel or proposed
processes.27−30 Thus, decision makers now have more insight
into the environmental impacts that their designs will have
before large sums of capital must be invested in construction,
allowing for more educated and better decisions. This new
understanding of the environmental effects of a process will be
critical in the development and implementation of biofuels and
bioproducts technologies. Thus, we develop a life cycle
optimization approach for a bioconversion product and process
network. In this work, we aim to quantify and minimize the
100-year global warming potential (GWP) in terms of
greenhouse gas emissions (kg CO2-eq) from the fourth
assessment report of the IPCC: CO2 was given a GWP of 1,
CH4 a GWP of 24, and N2O a GWP of 298.31 Climate carbon
feedbacks are not included. We narrow our focus to the GWP
in this study so as to allow for development of the novel,
fundamental ideas proposed in this work. The GWP is certainly
not the only environmental concern that should be
characterized in a thorough life cycle optimization; land use
changes, eutrophication potential, and the nitrogen footprint
are all important environmental concerns that can be addressed
in future works using the foundational framework presented
herein.

System Boundaries. As in a typical LCA, we consider the
system boundaries for life cycle optimization. This is a critical
step, as different system boundaries can give different results. In
the case where production of both biofuels and bioproducts are

Figure 2. Demonstration of different system boundaries for bioconversion processing pathways, with cumulative NACR calculations in the bottom
of each system boundary. Cumulative emissions are shown in the numerator and inputs of CO2-eq are shown in the denominator in the bottom of
each system boundary. The quantity of CO2-eq emitted or consumed in the end uses of any bioproducts produced is unclear.
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allowed, the system boundaries are defined as cradle-to-gate
(Figure 2). GHG emissions will be tallied in biomass
cultivation, transportation of the biomass, and production of
the biofuels and bioproducts. GHG emissions from biomass
cultivation were taken from the GREET model.32 However,
while it is clear that the biofuels will undergo combustion as an
end use, the end use for bioproducts is not as straightforward.
Some bioproducts could be used for energy, such as hydrogen.
Others, such as the biopolymer poly-3-hydroxybutyrate, have
primary functions that will not include combustion, but rather
have uses in the chemicals manufacturing industry. Thus, we
limit the system boundary to a cradle-to-gate boundary rather
than a cradle-to-grave one in order to allow a more focused
discussion on the environmental effects of bioconversion to any
product (Figure 2). However, in the case where only biofuels
are allowed to be produced, we consider a cradle-to-grave
boundary (Figure 2). In this case, we assume that all of the
produced biofuels are consumed after being produced in the
processing pathway, and all combustion emissions are
attributed to the processing pathway.33

Functional Unit. Another key aspect of LCA is the choice of
functional unit. Functional units are meant to be a quantitative
basis that determines how the results of the LCA could be
interpreted. They can lead to more insightful results as opposed
to bulk numbers that might be difficult to understand in
context. For example, an LCA of an automobile manufacturing
facility might consider emissions per vehicle produced instead
of the facility’s total emissions. This can help decision makers
by providing a more tangible understanding of their operations’
environmental impacts. More importantly, however, results
from the functional unit approach can be used to compare the
environmental impacts with those of other facilities and
products from within their organization, their competition,
and around the globe.
The process systems engineering field has responded to the

importance of the functional unit in LCAs by integrating the
concept into life cycle optimization techniques. Pioneering
work by Osman and Ries34 optimized and compared electrical
and thermal energy systems for commercial buildings based off
of a functional unit of 1 kWh of energy. However, they used the
functional unit to constrain the optimization problem; each
type of electrical/thermal energy system was optimized under a
constraint to produce the functional unit of 1 kWh of energy.
More recently, functional units have alternatively been directly
integrated into the objective functions of optimization models.
For example, Yue et al. optimized a biofuels supply chain using
a functional unit of gasoline-equivalent gallon, an energy-based
metric.35 Gong et al. optimized a microalgae processing
technology superstructure to produce biodiesel in a similar
vein.36 Life cycle optimization of a cellulosic bioelectricity
supply chain employed a functional unit of 1 kWh of electricity
produced.37 Integrating the functional unit into the objective
functions of life cycle optimization models instead of
implementing the functional unit as a constraint allows
optimization of those objectives with respect to the functional
unit, allowing for more flexible and diverse optimization
models. These choices of functional units are relatively
straightforwardfuels and electricity are both primarily used
as sources of energy, so an energy basis for each functional unit
is immediately intuitive.
When only biofuels can be produced from the processes

under consideration, as in the previous studies, the choice of an
energy-based functional unit, such as gasoline-equivalent gallon,

serves the life cycle optimization model well. However, when
bioproducts that are not meant to serve as a source of energy
are also produced, the choice of functional unit is not as clear.
To confront this dilemma, thought was directed toward
commonalities between bioproducts and biofuels. To that
end, we noted that the benefit of these processes, indeed the
impetus behind their development, is to increase society’s use
of renewable ones (e.g., biomass). Thus, these products’
functions are to use renewable carbon-based feedstocks, leading
to the definition and introduction of a novel functional unit of
“mass of input biogenic CO2-eq ” This functional unit aims to
capture the quantity of atmospheric carbon dioxide absorbed by
the biomass during its growth. Thus, it symbolizes the CO2
sequestering effect of biomass. Since CO2 is not directly present
in the biomass, all of the carbon content of the biomass in its
various forms (carbohydrates, proteins, cellulose, hemicellulose,
lignin, etc.) was assumed to be derived from CO2 absorption.
Therefore, the amount of input CO2-eq was calculated from the
chemical composition of each biomass feedstock.
As this is a new functional unit, some justification and

explanation is required. Consider the case where the objective is
to minimize the unit costs of a bioconversion processing
pathway with this functional unit. The units of the solution
could for example be $/kg input CO2-eq Conceptually, this
cost could be interpreted as the cost that the decision maker
pays or the value the decision maker creates when using
specifically renewable feedstocks to produce traditional fuels
and/or chemicals. Alternatively, when minimizing unit green-
house gas emissions of the pathway, use of this functional unit
will result in a dimensionless ratio. We term this ratio the “Net
Atmospheric CO2-eq Ratio” (NACR), as it can convey the
relation between the input CO2-eq in the biomass and the total
CO2-eq emissions throughout the products’ lifecycles:

=
−

−

NACR
total kg CO equivalent emitted throughout processing pathway

kg CO equivalent absorbed by inputs from atmosphere
2

2

To clarify, the numerator of the NACR as it is defined here
reflects total GHG emission throughout the processing pathway
and does not account for CO2-eq uptake at any point in the
processing pathway. CO2-eq uptake throughout the processing
pathway is calculated in the denominator. We note that the kg
CO2-eq absorbed by inputs in a bioconversion processing
pathway (the biomass) is the same as the kg CO2 absorbed.
However, the NACR as it is defined allows for flexibility of
other processes that need not use biomass but that might
absorb other GHGs from the atmosphere, such as methane or
nitrous oxide. This ratio can be less than one when bioproducts
are also produced and when combustion emissions of any
biofuels are omitted. In a case where only biofuels are produced
and combustion emissions are counted when calculating overall
processing pathway emissions, this number should be expected
to be greater than one, with unity holding only when the
processing pathway produces neither indirect nor direct
emissions. It is noted that the information within the NACR
depends on the temporal and spatial system boundaries;
examples of this dependence are depicted in each system
boundary in Figure 2. As another example, consider petroleum
fuel production and combustion. If considering short time
frames, the NACR approaches infinity (essentially zero
atmospheric carbon is absorbed in the formation of the
feedstock in the short term). However, if the temporal system
boundary stretches from when the ancient input biomass began
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conversion to fossil fuels into the present day, then the NACR
of fossil fuels could approach unity. This paper focuses on the
practical case of the present to near future usage of the
feedstock and any end products. The power of this functional
unit lies in its flexibility to account for the use of input biomass
for any purposefuel or otherwise, assuming appropriate and
clear system boundaries are drawnand is based on the reason
for using biomass as a fuel or chemical precursorits
renewability. However, there are some key potential drawbacks
of this functional unit. In the case where it is used as a
denominator of an objective function that is to be minimized in
an optimization model (such as in the NACR above), then the
objective could be minimized by maximizing the mass of input
CO2-eq In the specific case of a bioconversion processing
pathway optimization study, for example, this would equate to

using as much input biomass as possible. When considering
other environmental objectives, such as land use, nitrogen
consumption, etc., this result might be disagreeable. However,
such an analysis is outside of the scope of this particular study,
but should be investigated moving forward.

Model Formulation and Solution Method. A multi-
objective mixed integer nonlinear fractional programming
(MINLFP) problem is formulated to determine the minimum
unit cost and minimum NACR for a processing pathway from a
bioconversion process and product network. Additionally, a
single objective MINLFP is formulated in this work to
minimize the NACR for a biofuels-only process and product
network. The general problems, as well as all sets, variables, and
equations, are provided in the Appendix.

Figure 3. Traditional branch-and-refine algorithm with successive piecewise linear approximations (left) can become infeasible if capital budget
constraints are considered in the model (right).

Figure 4. Algorithm flowchart for the proposed solution method in this study.
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As MINLFP problems can be difficult to solve directly with
general global solvers, three steps were taken to increase
computational efficiency. First, we incorporate the ε-constraint
method to handle the multiobjective component of the
problem.38 Next, the fractional form of the objective function
results in nonlinear terms that can be computationally difficult
to handle. We circumvent this complication by implementing
the parametric algorithm.39−41 The resulting problem is still a
nonconvex mixed integer nonlinear programming (MINLP)
model with separable concave terms. We note that these
concave terms arise in the calculation of the capital cost terms
that follow the “six-tenths rule” scaling with capacity.42 These
nonlinear, nonconvex terms can increase the computational
difficulty of the problem. Therefore, we implement piecewise
linear approximations with SOS1 variables instead of these
nonlinear, nonconvex terms to find a valid global lower bound
for the objective function,43 resulting in a mixed integer linear
programming (MILP) problem that is much easier to solve. A
valid global upper bound for the production cost could be
calculated from using the optimal solution of the MILP
problem to calculate the value of the original MINLP objective
function. These piecewise linear approximations are succes-
sively updated in a branch-and-refine algorithm until a
predefined gap between the objective function’s upper and
lower bound is met.44−46

However, the introduction of a capital cost budget in this
work may make this approach infeasible, shown in Figure 3. To
confront this problem, we develop a novel approach to retain
both the solving efficiency of the piecewise linear approx-
imations and global convergence to a feasible solution. In all of
the models presented in this work, the only binary variable
introduced is the variable that determines whether a technology
will be incorporated into the processing pathway or not. Thus,
when this variable is fixed as a parameter, the resulting problem
is reduced from an MINLP to a nonlinear programming (NLP)
model. Any feasible solution of this NLP (local or global) is a
feasible upper bound to the problem’s global solution. Thus,
the piecewise linear approximations of Figure 3 can still be used
to determine a feasible lower bound, the binary design decision
variable can be fixed, and the resulting NLP subproblem can
then be solved to obtain a feasible upper bound. This global
optimization strategy is outlined in Figure 4 and is further
detailed in the Appendix. This method shares some similarities
to the outer approximation method,47 but in this case, the

underlying NLP has nonconvex terms, requiring the presented
novel approach. In summary, the MILP is first solved to find a
feasible lower bound with the branch-and-refine algorithm with
successive piecewise linear approximations. The binary variables
are then fixed, and the resulting NLP subproblem is solved to
find a valid global upper bound to the original MINLFP. This
process is iterated within the context of the parametric
algorithm until some gap threshold of the relative difference
between the bounds is met.
All computational experiments are performed on a DELL

OPTIPLEX 790 desktop with an Intel(R) Core(TM) i5-2400
CPU @ 3.10 GHz and 8 GB RAM. All of the models and
solution procedures are coded in GAMS 24.4.2.48 The MILP
problems within the proposed algorithm are solved with
CPLEX 12.6, and the NLP subproblems are solved using
CONOPT 3. The original MINLFP formulation is solved with
BARON 14.4.049 with an optimality gap of 10−2. The results
shown in this section were obtained with the proposed
algorithm.

■ RESULTS AND DISCUSSION

In each case study, demands of ethanol, gasoline, and diesel
(10.9, 11.5, and 10.3 ML/y, respectively) are to be met. These
demands are based on the production rate of a recently
constructed representative POET cellulosic biorefinery with a
starting production capacity of 20 Mgal/y of ethanol.50 This
representative facility has an estimated capital cost of $275M,
providing an appropriate capital cost budget for the demand
levels of each fuel to be satisfied in the following case studies.50

Major decision variables in these models include technology
pathway selection and sizing of the chosen technologies. Other
model variables include quantity of feedstock to purchase,
quantity of product(s) to produce, capital and operating costs,
and environmental impact throughout the pathway. Direct and
indirect emissions (including from electricity consumption and
fuel use on-site) are accounted for with direct emission factors
(see Appendix). The simultaneous unit cost and NACR
minimization case study has a system boundary drawn from
cradle to gate, and the case study for NACR minimization over
a biofuels-only network has a cradle to grave system boundary
(Figure 2). As detailed in the Appendix, the cost is calculated as
the summation of the various costs incurred throughout the
processing pathway (feedstock costs, annualized capital costs,
operating costs, etc.) with the sales of products (fuels and

Figure 5. Pareto-optimal curve for the simultaneous minimization of unit cost and NACR; this curve can be read using the left and bottom axes
(Unit Cost versus NACR). The orange bars correspond to the right axis and the input CO2-eq/y of each solution.
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bioproducts) taken as a negative credit. Thus, the unit cost is
allowed to be negative, implying the revenue from sales is larger
than the cost; in other words, this would mean the processing
pathway is profitable. Ultimately, the goal of the model is to
identify optimal biomass processing pathways with biofuel
demands to be satisfied. Thus, the problem is not to optimize
the design and operations of a biorefinery or biorefineries that
will utilize the processes identified, but to determine an ideal
processing pathway of biomass to fuels and, perhaps, chemicals.
Such a focus allows the model to focus on a more fundamental
question of identifying an overall optimal bioconversion
processing pathway.

Simultaneous Unit Cost and NACR Minimization. The
Pareto-optimal curve for the simultaneous minimization of unit
cost and NACR over the entire bioconversion network is
shown in Figure 5 The input CO2-eq of each solution is also
indicated as a bar chart in the figure. Unit costs range from
−$0.27 to −$0.43/kg input CO2-eq, and the NACRs ranges
from 0.17 to 0.25. It should be noted that the NACRs
calculated in this case study do not include postprocessing
combustion of product biofuels. Bioproducts are also allowed
to be produced, and it is unclear how to determine any
postprocessing emissions to them. Thus, the case study focuses
on a cradle-to-gate analysis. The minimum NACR solution, the
minimum unit cost solution, and a good compromise solution

Figure 6. Optimal processing pathway results at the minimum NACR solution.

Figure 7. Optimal processing pathway for the minimum unit cost solution.
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are highlighted in Figure 5, and their corresponding processing
pathways are shown in Figures 6, 7, and 8, respectively.
Demand for ethanol is met exactly in the minimum NACR

solution (Figure 6), which is profitable with a unit cost of
−$0.27/kg input CO2-eq and has a NACR of 0.17. Gasoline
and diesel are produced in excess of their respective demands,
indicating the process to produce them (pyrolysis and
upgrading of softwood and hardwood) is profitable. All of
these products are made from softwood and hardwood using
the relatively inefficient thermochemical pathways of pyrolysis
and gasification. When considering the minimization of overall
greenhouse gas emissions throughout the processing pathway,
it might be expected that product demand would be met exactly
with no other processing. This strategy avoids feedstock
transportation emissions and direct and indirect processing
emissions. However, not only are the demands for gasoline and
diesel exceeded, but a large amount of soybeans is used to make
poly-3-hydroxybutyrate (PHB), isobutanol, and biodiesel at this
minimum NACR solution. Furthermore, relatively inefficient
(from a mass yield perspective) softwood and hardwood
pathways are utilized, requiring large amounts of softwood and
hardwood feedstocks. Indeed, according to Figure 5, this
solution uses the most input CO2-eq of all solutions. The
addition of the functional unit of kg input CO2-eq to the model
serves to introduce a balancing act of environmental harm with
perceived environmental benefit. This trade-off is between the
benefit of using renewable feedstocks to make fuels and
chemicals, while the harm would be emissions incurred by
processing the biomass. Thus, minimizing the NACR for
bioconversion product and process networks provides results
from a novel perspective. It should be noted that this
processing pathway is profitable, in part due to the production
of bioproducts in addition to biofuels. Therefore, it is possible
that the production of bioproducts is, in effect, subsidizing the
production of the biofuels in the processing pathway. Such
information can be utilized by decision makers to adjust their
production targets accordingly depending on their goals
(economic, environmental, or otherwise).

The processing pathway for the minimum unit cost solution
is shown in Figure 7. As in the minimum NACR pathway,
softwood and soybeans are used. However, switchgrass is also
used in this pathway. Overall, the processing pathway is more
streamlined and less integrated than the minimum NACR
solution. Ethanol and gasoline demands are met exactly,
indicating that the marginal economic cost to produce ethanol
or gasoline via any processing pathway in the network is higher
than the producer’s marginal economic benefit. Large amounts
of biodiesel and isobutanol are produced, indicating that these
processes are profitable. This result gives credence to the
proposal that bioproducts can aid the economics of a biofuels
process. The NACR of this process is 0.25, an increase of
almost 50% over the minimum NACR solution, despite
consuming approximately half of the input CO2-eq. Pathways
with higher yields are favored in this solution to avoid the
purchase of more biomass, decreasing the unit cost and
increasing the NACR.
The good compromise solution has a unit cost of −$0.38/kg

input CO2-eq and a NACR of 0.20; the processing pathway of
this solution is shown in Figure 8. Thus, this good compromise
solution is profitable with 25% fewer unit emissions than the
minimum unit cost solution and utilizes an amount of input
biomass that is intermediate between the two. Thus, this
solution represents a good compromise on a number of levels
between the two extreme points. As in the previous two
pathways, this pathway utilizes soybeans and softwood.
However, corn stover is also pyrolyzed to make more gasoline
and dieselproducts with higher margins for the producer.
Co-production of bioproducts is important to achieving a low
NACR in all cases; isobutanol is produced in all of the
solutions. With low NACRs across all of the Pareto-optimal
solutions, there could be a large environmental benefit to
producing bioproducts in tandem with biofuels.
Sensitivity analyses were also performed. The yield of a key

technology (indirect gasification of softwood) was allowed to
vary, and the prices of the biomass feedstocks were also allowed
to vary (refer to the SI for the results of the sensitivity

Figure 8. Optimal processing pathway for the good compromise solution.
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analyses). Overall, these changes did not change the objective
values or processing pathways of the solutions along the Pareto
curve dramatically. This is likely due to the fractional nature of
the objective function; only significantly large deviations in the
results will cause large fluctuations in the value of fractional
objectives. We note that in order to truly assess the robustness
of the results presented here, dedicated future studies
employing techniques such as stochastic programming or
robust optimization will be required.
NACR Minimization in a Biofuels-Only Network. The

NACR is minimized in this case study with a different system
boundary than the previous case study. Only biofuels are
allowed to be producedthus, the CO2-eq emissions incurred
from biofuel combustion are considered. The optimal
processing pathway with minimum NACR is shown in Figure
9. As expected, the resulting NACR of 1.90 is well over 1, as
emissions are produced from biofuel combustion and
throughout the processing pathway. The process is highly
integrated and uses 285 kt/y of biomass to exactly meet fuel
demand. Thus, the trade-off between the benefit of using
renewable biomass inputs for fuel and the environmental costs
of biomass cultivation and processing is optimized. These
results show that the NACR serves to succinctly display this
trade-off and shows promise as an environmental indicator for
biofuels processing pathways within a variety of system
boundaries.
We note that across all case studies, transportation and

indirect processing emissions were significantly smaller than
GHG emissions stemming from biomass cultivation and direct
processing. These results might indicate that reductions in
emissions from biomass cultivation and bioconversion process-
ing will be key to lessening the GWP of bioconversion
processes as a whole. Furthermore, use of woody biomass is
almost unilaterally preferred in all cases above, and
thermochemical conversion technologies are largely favored
over traditional biochemical methods. Indeed, the traditional
corn to bioethanol process is absent from all solution methods

(including results from the sensitivity analyses in the SI). These
results might indicate that later generation technologies, such as
pyrolysis and gasification might not only be more economical,
but might also result in lower levels of GHG emissions. Further
work should also be performed comparing optimization results
obtained with the proposed functional unit of kg CO2-eq and
an energy-based functional unit (e.g., MJ) of a biofuels only
product and process network optimization problem.
A comparison of the computational performance of solving

this case study with the proposed solution algorithm and
solving the problem directly with BARON 14.4.0, a general
purpose MINLP solver is shown in Table 1. Despite the

increase in problem size due to the addition of more constraints
and binary variables, the proposed solution method demon-
strated significant performance improvements compared to
BARON 14.4.0. The proposed solution method found an
optimal NACR of 1.899 in 1.68 s, while BARON 14.4.0 could
not find an optimal solution within the computational limit of
10,000 CPUs. Furthermore, few iterations on the parametric

Figure 9. Optimal processing pathway for NACR minimization of the biofuels-only product and process network. Calculation of the NACR is also
shown.

Table 1. Computational Results of the NACR Minimization
in the Biofuels-Only Case Study

original MINLFP
problem MILP with NLP subproblem

objective value
(NACR)

[1.59828,1.94335] 1.899

constraints 1514 2913 (1513 in NLP
subproblem)

continuous variables 1091 1890 (890 in NLP
subproblem)

discrete variables 200 400 (0 in NLP subproblem)
solver BARON 14.4.0 CPLEX 24.2.1/CONOPT 3

solution time (CPU s) 10,000* 1.68
outer loop iteration

count
N/A 4

average inner loop
iteration count

N/A 1.25
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algorithm (the outer loop) were needed, and the average
iteration count of the inner loop was also small. Thus, the
proposed solution method shows promise to find globally
optimal solutions for product and process network optimization
problems with capital budget constraints.

■ CONCLUSION

A bioconversion network of 200 technologies and 142
compounds/materials was constructed, the largest compiled
to date. This network includes processing pathways for both
biofuels and bioproducts. A functional unit of “kg input CO2-
eq” was defined to perform life cycle optimization over the
network. A general multiobjective MINLFP model was
constructed to optimize product and process networks over
economic and environmental criteria. The parametric algorithm
was employed to handle the fractional component of the
problem. The ε-constraint method was implemented to handle
the multiobjective optimization. Piecewise linear approxima-
tions were used to provide a valid, global lower bound for the
objective function. A novel NLP subproblem method to obtain
feasible upper bounds within the context of capital budget
constraints was implemented to increase computational solving
efficiency. This model was then applied to a variety of case
studies.
A multiobjective case study was performed for the

simultaneous minimization of unit cost and the Net
Atmospheric CO2-eq Ratio (NACR), defined as the amount
of CO2-eq emissions relative to the input CO2-eq of the
biomass. The NACR ranged from 0.17 to 0.25 with unit costs
ranging from −$0.27 to −$0.43/kg input CO2-eq A single
objective case study was also performed under a scenario where
only biofuels were allowed to be produced for the minimization
of the NACR, which included biofuel combustion emissions. In
this case, the NACR was found to be 1.90. The proposed
algorithm was found to perform significantly faster than the off-
the-shelf global solver BARON 14.4.0 and shows promise for
finding globally optimal solutions for product and process
network optimization problems with fractional objectives and
capital budget constraints.
Overall, the new functional unit of “kg input CO2-eq” was

shown to produce insightful results in the case of bioconversion
product and process network optimization. The proposed
NACR was shown to have potential in capturing the
environmental benefit not only in producing bioproducts in
tandem with biofuels, but also in reducing the relative
greenhouse gas emissions produced to make products from a
biomass feedstock. In the case of co-production of biofuels and
bioproducts, the system boundary for life cycle optimization
was drawn as cradle-to-gate, as the end-life destinies of the
various bioproducts were uncertain. Future studies could
investigate this key aspect for a more thorough life cycle
optimization of biofuels and bioproducts co-production.
Further steps should be taken to refine and implement this
functional unit and the NACR when analyzing bioconversion
systems. Similar refinement must be considered for other
environmental and social impacts.

■ APPENDIX: MODEL FORMULATION

This appendix details the construction of the MINLFP model
used in this study. A new model is developed for this study that
includes fractional objectives for network-based optimization
problems and also contains a novel capital cost budget

constraint. This model provides a novel perspective on unit
costs and environmental impacts of bioconversion processes
and allows the user to set a maximum capital cost for the
processing pathway. These features are not present in previous
works and network optimization models. The goal is to
simultaneously minimize the unit cost and NACR objective
functions under economic, mass balance, and greenhouse gas
emissions constraints. Variables are denoted in capital case, and
parameters are denoted in lower case. Multiobjective, MINLFP
model results that can be represented compactly as (P1) are
shown below:

OBJ

OBJ

min in (A.1)

min in (A.2)

NACR

uc (P1)

s.t. economic evaluation constriants A.3−A.7
mass balance constraints A.8−A.10
greenhouse gas emissions constraints A.11−A.14
Implementation of the ε-constraint method, parametric

algorithm, and piecewise linear approximations is demonstrated
in the Supporting Information.
Objective Functions
The goal of the model is to minimize the NACR:

=OBJ
GHG

ICNACR (A.1)

where GHG is a variable for the amount of greenhouse gas
emissions, measured in kg CO2-eq, that are emitted throughout
the processing pathway’s system boundaries, and IC is a
variable that denotes the amount of input CO2-eq in the form
of biomass to the processing pathway. In the multiobjective
case, the NACR is simultaneously minimized along with the
unit cost of the processing pathway:

=OBJ
t

IC
cos

uc (A.2)

Economic Constraints
Cost is the variable that captures all aspects of the processing
pathway’s costs:

∑

∑ ∑

∑

= + · + ·

+ · + + + ·
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∈

∈
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S sp
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j
j j j

j

j
j

i B
i i i i

j
j j

i F P
i i

, (A.3)

where fcf j is the fixed cost factor for technology j, cchf j is the
capital charge factor for technology j, CCj is the capital cost of
technology j, Xj is the capacity of technology j, refcj is the
reference capacity for technology j, refocj is the reference
operating cost for technology j, Pi is the quantity purchased of
material/compound i, fpi is the feedstock price of compound i,
vtci is the variable transportation cost of feedstock i, f tci is the
fixed transportation cost of feedstock i, ec is the cost of
electricity, uej is the unit energy consumption of technology j, Si
is the quantity sold of biofuel or bioproduct i, and spi is the
selling price of biofuel or bioproduct i. The fixed transportation
costs f tci are distance-fixed and not mass-fixed parameters; thus,
these costs must be multiplied by the feedstock quantity
purchased, Pi. The capital cost can be calculated as follows:
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= · · ∀CC refcc ccf X j,j j j
sfj

(A.4)

where refccj is the reference capital cost of technology j
corresponding to refcj, and ccf is the capital cost factor that takes
into account the chemical engineering plant cost index
(CEPCI) from the year the technology was reported to the
current year. The capital charge factor cchf j is calculated by
assuming an interest rate of 10% and a plant lifetime of 20
years, as previous works have assumed.18 The fixed cost factor
fcf j is taken as 5% of the capital cost of technology j.42

The denominator IC in each objective is calculated as
follows:

∑ ∑= − · ·
∈

IC X dy caco
i B j

j ij i
(A.5)

where dyi is the destructive yield of technology i in process j,
and cacoi is the CO2-eq content of the input biomass i. Thus,
only biomass that is both purchased and processed is counted
in the calculation for input CO2-eq
We implement a novel capital cost budget ccb:

∑ ≤CC ccb
j

j
(A.6)

We then add upper and lower bounds on the capacity for
each technology:

· ≤ ≤ · ∀BD lcap X BD ucap j,j j j j j (A.7)

where lcapj is the lower bound on capacity for technology j, BDj
is the binary decision variable that determines whether
technology j is chosen to be in the pathway or not, and ucapj
is the upper bound on capacity for technology j.
Mass Balance Constraints
There must be mass balance constraints in the model. Mass is
balanced over each technology in the pathway:

∑ ∑+ · = − · ∀P py X S dy X i,i
j

ij j i
j

ij j
(A.8)

where pyij is the productive yield of compound/material i in
technology j (positive if compound/material i is produced in
technology j), and dyij is the destructive yield of compound/
material i in technology j (negative if compound/material i is
consumed in technology j).
Biofuel demand must be met:

≤ ∀ ∈dem S i F,i i (A.9)

where demi is the demand for biofuel i.
Biomass feedstocks are subject to minimum and maximum

availabilities:

≤ ≤ ∀ ∈mna P mxa i B,i i i (A.10)

where mnai is the minimum availability of feedstock i, and mxai
is the maximum availability of feedstock i. In this study, the
minimum availability of each feedstock was set to zero. The
maximum availability was made large enough to ensure that
feedstock availability would not constrain the model such that
demands for the biofuels could not be satisfied and optimal
processing pathways could be found.
Greenhouse Gas Emissions Constraints
Next, environmental constraints that are used to calculate the
NACR must be considered. GHG from eq A.1 can be calculated
as follows:

∑ ∑= + + · + · ∀
∈

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟GHG E T cuem P pcee

X

refc
j,

i B
i i

j
j

j

j

(A.11)

where E accounts for the emissions of the process due to
electricity usage, T accounts for emissions of the process due to
transportation of the biomass feedstock, cuemi accounts for
emissions from the cultivation of feedstock i, and pceej accounts
for the CO2-eq emissions associated with processing through
technology j. E can be calculated:

∑= ·E em X
j

j j
(A.12)

where emj is the rate of CO2 emitted due to electricity demand
of technology j:

∑= · · ∀em ue elf emf j( ),j j
e

e e
(A.13)

where elfe is the electricity fraction for electricity source e, and
emfe is the emfe is the emission factor of nonrenewable CO2
emitted by electricity source e.
T can also be calculated:

∑= ·
∈

T tref P
i B

i i
(A.14)

where tref i represents the emissions associated with trans-
porting feedstock i.
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■ NOMENCLATURE

Sets
B Set of biomass feedstocks indexed by i
E Set of all possible sources of electricity used in processing

pathway indexed by e
F Set of biofuels indexed by i
I Set of all compounds and materials indexed by i
J Set of processing technologies indexed by j
N Set of grid points for piecewise linear approximations to

capital cost indexed by n
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P Set of bioproducts indexed by i

Parameters
cacoi CO2-eq content of biomass i
ccb Capital cost budget for the processing pathway
ccf Capital cost factor (accounts for inflation, the Chemical

Engineering Plant Cost Index, etc.)
cchf j Capital charge factor for technology j (accounts for

interest rate and project lifetime)
cuemi GHG emissions from cultivation of feedstock i
demi Demand for compound/material i
dyij Destructive yield of compound/material i in technology

j
ec Cost of electricity
elfe Electricity fraction for electricity source e
emj Rate of CO2 emitted due to electricity demand of

technology j
emfe Emission factor of nonrenewable CO2 emitted by

electricity source e
enci Energy content of material/compound i
fcf Fixed cost factor
fpi Feedstock price for feedstock i
f tci Fixed transportation cost for transporting feedstock i
lcapj Lower bound on capacity for technology j
mnai Minimum availability of compound/material i
mxai Maximum availability of compound/material i
pceej CO2-eq emissions associated with processing through

technology j
pyij Productive yield of compound/material i in technology j
refcj Reference capacity of technology j
refccj Reference capital cost of technology j
refocj Reference operating cost of technology j
sf j Capital cost scaling factor for technology j
spi Selling price for material/compound i
tref i Emissions associated with transporting feedstock i
ucapj Upper bound on capacity for technology j
uej Unit electricity requirement for technology j
vcf Variable cost factor
vtci Variable transportation cost for transporting feedstock i
Continuous Variables
CCj Capital Cost of technology j
Cost Variable to account for all costs incurred in the

processing pathway
GHG Emissions variable for use with the ε-constraint

method
IC Input CO2-eq from biomass
OBJNACR NACR objective
OBJuc Unit cost objective
Pi Purchase quantity of biomass feedstock i
Si Quantity produced/sold of bioproduct or biofuel i
Xj Capacity of technology j
Binary Variables
BDj Binary decision variable to choose whether to use

technology j in the processing pathway. It is 1 if
technology j is chosen in the pathway and 0 otherwise

■ REFERENCES
(1) Energy Independence and Security Act of 2007. H.R. 6, 110th
Congress. https://www.congress.gov/bill/110th-congress/house-bill/
6 (accessed July 2015).
(2) Vertes, A. A.; Qureshi, N.; Blaschek, H. P.; Yukawa, H. Biomass to
Biofuels: Strategies for Global Industries. 1 ed.; John Wiley & Sons: West
Sussex, U.K., 2010.

(3) Pathways to Deep Decarbonization: Interim 2014 Report;
Sustainable Development Solutions Network (SDSN) and the
Institute for Sustainable Development and International Relations
(IDDRI). http://www.deepdecarbonization.org (accessed July 2015).
(4) Yue, D.; You, F.; Snyder, S. W. Biomass-to-bioenergy and biofuel
supply chain optimization: Overview, key issues and challenges.
Comput. Chem. Eng. 2014, 66, 36−56.
(5) Downing, L.; Gismatullin, E. Biofuel Investments at Seven-Year
Low as BP Blames Cost; Bloomberg Business, July 8, 2013. http://www.
bloomberg.com/news/articles/2013-07-07/biofuel-investments-at-
seven-year-low-as-bp-blames-cost (accessed July 2015).
(6) Bernhard, R. H. Mathematical programming models for capital
budgetingA survey, generalization, and critique. Journal of Financial
and Quantitative Analysis 1969, 4 (02), 111−158.
(7) Kim, J. S.; Lee, B. N. Equivalent mathematical programming
models of the capital budgeting problem. Computers & Industrial
Engineering 1991, 20 (4), 451−460.
(8) Bozell, J. J. Connecting Biomass and Petroleum Processing with a
Chemical Bridge. Science 2010, 329 (5991), 522−523.
(9) Dunn, J. B.; Adom, F.; Sather, N.; Han, J.; Snyder, S. W. Life-
Cycle Analysis of Bioproducts and Their Conventional Counterparts in
GREET; Argonne National Laboratory: Argonne, IL, 2014.
(10) Gong, J.; You, F. Value-Added Chemicals from Microalgae:
Greener, More Economical, or Both? ACS Sustainable Chem. Eng.
2015, 3 (1), 82−96.
(11) Posada, J. A.; Naranjo, J. M.; Loṕez, J. A.; Higuita, J. C.;
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